No-Regret Learning in Extensive-Form Games with Imperfect Recall
نویسندگان
چکیده
Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFR’s regret bounds depend on the requirement of perfect recall: players always remember information that was revealed to them and the order in which it was revealed. In games without perfect recall, however, CFR’s guarantees do not apply. In this paper, we present the first regret bound for CFR when applied to a general class of games with imperfect recall. In addition, we show that CFR applied to any abstraction belonging to our general class results in a regret bound not just for the abstract game, but for the full game as well. We verify our theory and show how imperfect recall can be used to trade a small increase in regret for a significant reduction in memory in three domains: die-roll poker, phantom tic-tac-toe, and Bluff.
منابع مشابه
Imperfect-Recall Abstractions with Bounds
We develop the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Fu...
متن کاملCounterfactual Regret Minimization in Sequential Security Games
Many real world security problems can be modelled as finite zero-sum games with structured sequential strategies and limited interactions between the players. An abstract class of games unifying these models are the normal-form games with sequential strategies (NFGSS). We show that all games from this class can be modelled as well-formed imperfect-recall extensiveform games and consequently can...
متن کاملComputing Maxmin Strategies in Extensive-form Zero-sum Games with Imperfect Recall
Extensive-form games with imperfect recall are an important game-theoretic model that allows a compact representation of strategies in dynamic strategic interactions. Practical use of imperfect recall games is limited due to negative theoretical results: a Nash equilibrium does not have to exist, computing maxmin strategies is NP-hard, and they may require irrational numbers. We present the fir...
متن کاملCombining Incremental Strategy Generation and Branch and Bound Search for Computing Maxmin Strategies in Imperfect Recall Games
Extensive-form games with imperfect recall are an important model of dynamic games where the players are allowed to forget previously known information. Often, imperfect recall games are the result of an abstraction algorithm that simplifies a large game with perfect recall. Unfortunately, solving an imperfect recall game has fundamental problems since a Nash equilibrium does not have to exist....
متن کاملFinding Equilibria in Games of No Chance
We consider finding maximin strategies and equilibria of explicitly given extensive form games with imperfect information but with no moves of chance. We show: 1. A maximin pure strategy for a two-player extensive form game with perfect recall and no moves of chance can be found in time linear in the size of the game tree. In contrast, it is known that this problem is NP-hard for games with cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1205.0622 شماره
صفحات -
تاریخ انتشار 2012